Золотая педагогика

Критерий Коши равномерной сходимости функциональной последовательности

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Критерий Коши равномерной сходимости функциональной последовательности

Страница 2

Так как по условию достаточности выполняется неравенство , то какое бы х из Х не было взято, функциональная последовательность будет числовой последовательностью, а для числовой последовательности выполняется критерий Коши сходимости числовой последовательности , который утверждает, что эта последовательность сходится.

3) Значит, у функциональной последовательности существует конечный предел, а это доказывает существование предельной функции для функциональной последовательности: . Кроме того, .

А это означает, что функциональная последовательность будет сходиться на множестве Х, так как будет выполняться неравенство: , перейдем к пределу при , а n-const, получим: - условие равномерной сходимости функциональной последовательности по определению.

Теорема доказана .

Страницы: 1 2 

Образование, педагогика, воспитание:

Сущность педагоических инноваций
Педагогические инновации (другими словами нововведения) определяются в педагогической науке с нескольких точек зрения. Во-первых, под педагогической инновацией понимается целенаправленное изменение, вносящее в образовательную среду стабильные элементы (определённые новшества), которые улучшают хара ...

Психофизиологические особенности детей старшего дошкольного возраста с задержкой психического развития
Рост требований к личности ребенка, среди которых ранние сроки начала обучения, усложнение образовательных программ определяют необходимость своевременного выявления пограничных состояний интеллектуальной недостаточности современных дошкольников. Задержка психического развития у детей чаще всего об ...

Повышение квалификации
Вид профессионального обучения работников, имеющий целью повышение уровня их теоретических знаний, совершенствование практических навыков и умений. Повышение квалификации рабочих — это обучение, направленное на последовательное совершенствование их профессиональных и экономических знаний, умений и ...

© 2017-2021 Copyright www.fikus.site