Золотая педагогика

Свойства равномерно сходящихся функциональных последовательностей и рядов

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Свойства равномерно сходящихся функциональных последовательностей и рядов

Страница 3

.

С учетом записанного равенства, равенство пункта 5 примет вид:

.

Сравним равенства пункта 3 и пункта 7. Правые части равны, значит, равны и левые: .

Теорема доказана [14].

§9. Почленное интегрирование функциональных рядов

Теорема 6. Если последовательность непрерывных на функций сходится равномерно на указанном отрезке к предельной функции , то последовательность определенных интегралов с переменным верхним пределом будет сходиться равномерно на к определенному интегралу , причем будет справедлива следующая формула:

.

1) Так как по условию теоремы последовательность функций равномерно сходится к пределу функции на т.е. , то

функция будет непрерывна на на основании теоремы 5.

2) Известна теорема, что если функция непрерывна на , то она интегрируема на указанном отрезке, т.е. существует определенный интеграл

,

3) В силу равномерной сходимости последовательности функции к пределу функции на основании определения равномерной сходимости функциональной последовательности можно записать:

.

4) Рассмотрим разность двух определенных интегралов с переменным верхним пределом под знаком модуля:

=

(на основании свойства определенного интеграла).

5) С учетом неравенства пункта 3 можно написать:

.

6) Если правую часть последнего неравенства заменить на , то получим неравенство:

, что равносильно выражению

, но , поэтому

, .

Теорема доказана [14].

Следствие. Пусть функции непрерывны на и функциональный ряд равномерно сходится на указанном отрезке, тогда функциональный ряд вида будет равномерно ходиться на отрезке к или к , т.е. справедлива

Страницы: 1 2 3 4

Образование, педагогика, воспитание:

Понятие личностно-ориентированного обучения
Личностно-ориентированное обучение (ЛОО) – это такое обучение, которое во главу угла ставит самобытность ребенка, его самоценность, субъективность процесса учения. В педагогических работах, посвящённых вопросам такого рода обучения, оно обычно противопоставляется традиционному, ориентированному на ...

Сущность педагогического общения
Педагогическое общение — это особый вид общения, оно является «категорией профессиональной». Оно всегда обучающее, развивающее и воспитывающее. Общение ориентировано на развитие личности общающихся сторон, их взаимоотношений. Педагогическое общение — процесс динамичный: с возрастом воспитанников из ...

Функции, методы и формы социальной работы в школе
В условиях школы применяются различные смежные подходы, имеющие границы и зоны воздействия, в которых проявляются те или иные воздействия социальной работы. При этом всегда следует учитывать аспекты, где социальная работа должна ослабить свои позиции в пользу других служб. Социальная служба в школе ...

© 2017-2021 Copyright www.fikus.site