Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 19

Решение

Так как , то при .

Ряд - мажорантный, исследуем его на сходимость. По признаку Даламбера имеем:

.

Так как , то ряд сходится. По теореме Вейерштрасса, так как для R , то заданный ряд сходится равномерно и абсолютно на промежутке .

Ответ: Заданный ряд сходится абсолютно и равномерно на интервале .

Пример №26 (№354 из [7]).

Исследовать на равномерную сходимость ряд на всей числовой оси.

Решение

Воспользуемся признаком Вейерштрасса равномерной и абсолютной сходимости функциональных рядов. Так как при любом , то справедливо неравенство , при R. - сходящийся ряд Дирихле с . Значит, и ряд сходится абсолютно и равномерно при R.

Ответ: Заданный ряд сходится абсолютно и равномерно при R.

Пример №27 (№76 из [10])

Показать, что ряд сходится равномерно на отрезке

Решение

Так как при , и ряд - сходящийся ряд Дирихле с , то, по признаку Вейерштрасса, ряд сходится абсолютно и равномерно на отрезке .

Ответ: Заданный ряд сходится абсолютно и равномерно на отрезке .

Пример №28 (№82 из [10]).

Сходится ли равномерно ряд , если ?

Решение

Если , то . Так как -сходящийся числовой положительный ряд - ряд Дирихле с , то по теореме Вейерштрасса, ряд сходится абсолютно и равномерно при .

Ответ: Заданный ряд сходится абсолютно и равномерно при .

Страницы: 14 15 16 17 18 19 20 21 22 23 24

Образование, педагогика, воспитание:

Повышение компетентности педагогов в области интегрированного обучения детей с особыми образовательными потребностями в массовой школе
В Концепции модернизации российского образования на период до 2010 г. отмечается: «дети с ограниченными возможностями здоровья должны обеспечиваться медико-социальным сопровождением и специальными условиями для обучения в общеобразовательном ДОУ и школе по месту жительства». По статистическим данны ...

Методические рекомендации по введению жанров богослужебных и духовных песнопений в курсы музыкально-теоретических дисциплин
Начавшееся в конце ХХ века возрождение звучания сочинений, созданных для церкви, в настоящее время стало ярким фактором современной культурной жизни. А восстановление прежнего социального статуса церкви привлекло к ней нового поколение людей. В этой связи становится очень важным формирование у моло ...

Порядок сдачи зачета по преддипломной практике
Практика завершается зачетом (с оценкой) на кафедре. Зачет должен быть сдан студентом в течение десяти дней с момента окончания практики. Комиссия, принимающая зачет, при выведении итоговой оценки руководствуется следующим: отзывом руководителя практики на предприятии (организа-ции); качеством отве ...

© 2017-2021 Copyright www.fikus.site