Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 24

Элементы заданного функционального ряда являются непрерывными функциями при R, значит, они будут непрерывными и на отрезке , ведь .

Исходный ряд равномерно и абсолютно сходится при R по признаку Вейерштрасса, а, значит, и на отрезке , так как:

a) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии: ).

Следовательно, к заданному функциональному ряду можно применить теорему о почленном интегрировании ряда на отрезке .

Ответ: Теорему применить можно.

Пример №33 (№114 из [7], студент с помощью преподавателя).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд. По признаку Даламбера: , 0<1.

Значит, теорему о почленном интегрировании к функциональному ряду на отрезке применить можно.

Проинтегрируем почленно заданный ряд на отрезке .

.

Ряд, полученный от почленного интегрирования заданного функционального ряда имеет вид на .

Ответ: при .

Страницы: 19 20 21 22 23 24 25 26 27 28 29

Образование, педагогика, воспитание:

Диагностика двинательной активности детей дошкольного возраста
Определение объема двигательной активности производится при помощи механического и электронного шагомера. Для измерения естественной дневной двигательной активности шагомер надевается всем детям и снимается в определенный временной диапазон (например, с 8 до 17 или 19). В этот день не следует стиму ...

Актуальность профильного обучения
Профильное обучение имеет вековую историю, но и в настоящее время оно не потеряло своей актуальности, так как: 1. Профилизация обучения в старших классах соответствует структуре образовательных и жизненных установок большинства старшеклассников (социологические исследования показывают: больше 70% ш ...

Игры и упражнения с предметами
В воспитании детей раннего возраста очень важным является обогащение и совершенствование чувственного опыта в процессе деятельности. Характерной для этой возрастной ступени деятельностью является деятельность предметная. Ее называют ведущей не только потому, что она преобладает, но и потому, что им ...

© 2017-2021 Copyright www.fikus.site