Золотая педагогика

Электронное пособие по теме “Функциональные последовательности и ряды"

Другое о педагогике » Исследование функциональных последовательностей и рядов в вузе » Электронное пособие по теме “Функциональные последовательности и ряды"

Страница 29

Исследуем ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

так как , то условие абсолютной сходимости ряда не выполняется при R. Следовательно, ряд расходится.

Значит, к заданному функциональному ряду нельзя применить теорему о почленном дифференцировании.

Ответ: Теорему о почленном дифференцировании к ряду применить нельзя.

Пример №39 (№115 из [10]).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии с ).

Значит, теорему о почленном интегрировании можно применить к функциональному ряду на отрезке .

Ряд полученный при почленном интегрировании заданного ряда, примет вид на отрезке .

Ответ: при .

Пример №40 (№119 из [10])

Определить область существования функции и исследовать ее на дифференцируемость во внутренних точках существования.

Решение

Определим область сходимости ряда . По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то заданный функциональный ряд сходится абсолютно.

При ряд примет вид . Полученный ряд сходится условно, так как удовлетворяет условиям признака Лейбница (признак сходимости числовых знакочередующихся рядов), т.е. и .

Страницы: 24 25 26 27 28 29 30 31 32

Образование, педагогика, воспитание:

Учебный комплект по русскому языку авторов Р.Н. Бунеева, Е.В. Бунеевой, О.В. Прониной
Начиная с 1997 года, в практику школьного преподавания русского языка в начальных классах вошел учебный комплекс авторов Р.Н. Бунеева, Е.В. Бунеевой, О.В. Прониной. В "Пояснительной записке" программы определена основная цель курса - " развитие личности ребенка на основе формирования ...

Проектная деятельность с использованием среды Лого Миры на уроках информатики и естествознания
Проектную деятельность учащихся можно построить на примере многих школьных предметов, используя различные способы планирования желаемых результатов и организации работы над проектом: сбор информации, экспериментальные и опытные работы, создание газеты, спектакля, видеофильма и др. Мы предлагаем пос ...

Апробация экспериментальной модели влияния личностно-ориентированного подхода на эффективность процесса обучения
Поскольку в определении личностно-ориентированного обучения подчеркивается необходимости учета особенностей его субъектов, то для педагога становится актуальной проблема дифференциации детей. На наш взгляд, дифференциация необходима по следующим причинам: - разные стартовые возможности детей; - раз ...

© 2017-2021 Copyright www.fikus.site